光 变 色 材 料 领 域 先 行 者
咨询电话
021-5735-9130
取消
清空记录
历史记录
清空记录
历史记录
光控分子开关的开发及应用研究过程中,全可见光调控一直是人们关注的焦点。常规光控分子开关通常需要在紫外光激发条件下进行光调控操作,紫外光激发存在高耗能、损伤大(光副反应)、穿透性差以及光源相对较贵的缺点,长期使用紫外光激发会导致分子开关的稳定性受损(副产物积累,光致异构可逆性下降)以及相应材料基质的损伤,造成由分子开关构建的先进光学材料使用寿命缩短、性能下降。近期光控分子开关在高分辨生物荧光成像领域的应用研究不断兴起,而光调控过程中副产物的积累会导致荧光信号对比度下降并对生命体产生毒副作用。另外,紫外光激发高生物毒性和强背景荧光干扰则进一步凸显了其在实际应用中的弊端。
因此,用更温和的可见光替代紫外光激发光控分子开关、拓宽其应用领域是该领域未来发展的主要目标。二芳基乙烯光控分子开关由于其良好的热稳定性、光转化率以及快速响应性等优点成为了光控分子开关界的明星分子。然而,其可见光光致异构的有效策略却乏善可陈。
目前,可见光光致变色的二芳基乙烯设计策略主要通过延伸芳基侧链的共轭体系来实现开环体激发波长的红移,从而实现可见光激发光致变色。但是,共轭体系的增加会导致光控分子开关的抗疲劳性大幅减弱(稳定性下降)、开/闭环量子效率明显降低(活性降低甚至失活)。此外,共轭链增长也增加了分子设计合成的复杂性和功能的不可预测性,提升了产品研究与开发的风险。因此,发展新型高效、简单可行的可见光调控策略是可见光控分子开关研究领域亟待解决的关键性问题。
最近,华东理工大学田禾院士团队发表了基于全新策略构建的光开关分子DAE-DT可在420nm与550 nm波长的光激发下进行可逆光调控。DAE-DT的光致异构行为不仅呈现出与常规紫外光激发同样高效的闭环量子产率与光环化反应转化率,同时展现了很好的抗疲劳性(即可逆循环性能)。相比于常规紫外光激发下的迅速光老化(5次循环损失过半),三线态敏化可见光开关可以稳定工作至少10个循环以上(损伤率< 5%),体现了三线态敏化在光致异构体系设计中的优势。
此外,该光开关在固态条件下依然能展现出优异的可见光光致变色性能,成功实现了全可见光“刻写—擦除”应用。
复制成功
×